Abstract

Sign language recognition is one of the most challenging applications in machine learning and human-computer interaction. Many researchers have developed classification models for different sign languages such as English, Arabic, Japanese, and Bengali; however, no significant research has been done on the general-shape performance for different datasets. Most research work has achieved satisfactory performance with a small dataset. These models may fail to replicate the same performance for evaluating different and larger datasets. In this context, this paper proposes a novel method for recognizing Bengali sign language (BSL) alphabets to overcome the issue of generalization. The proposed method has been evaluated with three benchmark datasets such as ‘38 BdSL’, ‘KU-BdSL’, and ‘Ishara-Lipi’. Here, three steps are followed to achieve the goal: segmentation, augmentation, and Convolutional neural network (CNN) based classification. Firstly, a concatenated segmentation approach with YCbCr, HSV and watershed algorithm was designed to accurately identify gesture signs. Secondly, seven image augmentation techniques are selected to increase the training data size without changing the semantic meaning. Finally, the CNN-based model called BenSignNet was applied to extract the features and classify purposes. The performance accuracy of the model achieved 94.00%, 99.60%, and 99.60% for the BdSL Alphabet, KU-BdSL, and Ishara-Lipi datasets, respectively. Experimental findings confirmed that our proposed method achieved a higher recognition rate than the conventional ones and accomplished a generalization property in all datasets for the BSL domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.