Abstract

. We use an algorithm for special diagrams to prove a Bennequin type inequality tor the signature of an arbitrary link diagram, related to its Murasugi sum decomposition. We apply this inequality to show that the signature of a non-trivial positive 3-braid knot is greater than its genus, and that the signature of a positive braid link is minorated by an increasing function of its negated Euler characteristic. The latter property is conjectured to extend to positive links.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.