Abstract

ABSTRACTScaffolds fabricated from polymers have imprinted its wide applicability in the field of tissue engineering. The surface of electrospun poly(lactic acid) (PLA) nanofibers was modified to improve their compatibility with living medium. PLA film were treated with alkali solution to introduce carboxyl groups on the surface followed by covalent grafting of gelatin using Xtal Fluoro‐E as coupling agent. The gelatin g‐PLA polymer synthesized via ‘graft‐onto’ method exhibit fascinating properties as studied by contact angle measurement, fourier transformed infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, water vapor transmission rate(WVTR), swelling studies and differential scanning calorimetry. The fabricated gelatin g‐PLA scaffolds were further characterized to conduct the study on hydrolytic degradation, and extent of biodegradation at ambient temperature. It was observed from the in‐vitro analysis that the gelatin g‐PLA nanofiber (with hemolytic percentage, 0.56 ± 0.13%) was cytocompatible with fibroblast cell and does not impair cell growth. The WVTR obtained for the electrospun mat around 2900 ± 100 g/m2. 24 h signifies the optimal moist environment required for tissue engineering especially wound healing. Notably, many of these strategies resulted in porous hydrophilic scaffolds with human cell growth and proliferation for medical applications of various types. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46056.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.