Abstract

Majorana bound states are zero-energy modes localized at the ends of a one-dimensional (1D) topological superconductor. Introducing disorder usually increases the Majorana localization length, until eventually inducing a topological phase transition to a trivial phase. In this Letter, we show that in some cases weak disorder causes the Majorana localization length to decrease, making the topological phase more robust. Increasing the disorder further eventually leads to a change of trend and to a phase transition to a trivial phase. Interestingly, the transition occurs at ξ_{0}≫l, where l is the disorder mean free path, and ξ_{0} is the localization length in the clean limit. Our results are particularly relevant to 1D topological superconductors formed in planar Josephson junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.