Abstract
Elastin, a major component of vascular matrices, critically determines vascular mechanics and maintains the quiescence of smooth muscle cells (SMCs). Attempts to regenerate elastin in elastin-compromised blood vessels using tissue-engineering approaches is limited by the unavailability of elastogenic cues to upregulate poor elastin output and matrix assembly by adult vascular cells. We previously showed that hyaluronan (HA) elastogenically stimulates aortic SMCs, although these effects are highly specific to HA fragment size. The elastogenic response of SMCs can also be modulated with growth factors such as insulin-like growth factor (IGF-1). Here, we evaluate the benefits of concurrent delivery of HA fragments (0.76-2000 kDa) and IGF-1 (500 ng/ml) to elastin synthesis, organization and crosslinking. The study outcomes show that, relative to supplement-free cultures, IGF-1 and long-chain HA/large HA fragments, but not HA oligomers, together induce multifold increases in the synthesis of elastin precursors, structural elastin matrix yields and crosslink densities within cell layers, and encourage elastic fibre formation. These outcomes are not all obtained when either of the cues is provided separately. IGF-1 and large HA fragments (>20 kDa) also together inhibit cell proliferation, a concern in elastin-compromised vessels, where SMC hyperproliferation is common. The results will benefit efforts to provide exogenous or scaffold-based elastogenic cues (IGF-1 + HMW HA/large HA fragments) to enable robust and faithful regeneration of elastin matrix structures in vivo or in vitro. The present outcomes may be used to restore elastin matrix homeostasis in de-elasticized vessels and tissue-engineered constructs that may be grafted as a substitute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.