Abstract

In this study, we address the benefits of a vertically staggered (VS) wind farm, in which vertical-axis and horizontal-axis wind turbines are collocated in a large wind farm. The case study consists of 20 small vertical-axis turbines added around each large horizontal-axis turbine. Large-eddy simulation is used to compare power extraction and flow properties of the VS wind farm versus a traditional wind farm with only large turbines. The VS wind farm produces up to 32% more power than the traditional one, and the power extracted by the large turbines alone is increased by 10%, caused by faster wake recovery from enhanced turbulence due to the presence of the small turbines. A theoretical analysis based on a top-down model is performed and compared with the large-eddy simulation. The analysis suggests a nonlinear increase of total power extraction with increase of the loading of smaller turbines, with weak sensitivity to various parameters, such as size, and type aspect ratio, and thrust coefficient of the vertical-axis turbines. We conclude that vertical staggering can be an effective way to increase energy production in existing wind farms. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.