Abstract

BackgroundProsthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes.MethodsSeven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated.ResultsProsthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF.ConclusionsThe studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.

Highlights

  • A lower-limb amputation, regardless of the anatomical level, is a dramatic event that inevitably results in mobility impairments

  • A study investigating standing on slopes found that persons with a transtibial amputation (TTA) and persons with a transfemoral amputation (TFA) had to use postural compensation strategies to cope with the lack of adaptability in ESR prosthetic feet [4]

  • Individuals with TTA and TFA walking with the microprocessor-controlled prosthetic foot (MPF)-M exhibited a larger plantarflexion and dorsiflexion compared to ESR, indicating a larger ankle range of motion (ROM)

Read more

Summary

Introduction

A lower-limb amputation, regardless of the anatomical level, is a dramatic event that inevitably results in mobility impairments. As standard ESR feet provide no movement in the ankle and can adapt to non-level surfaces like slopes, stairs or uneven ground only by the flexibility of their springs, these situations are challenging to master for individuals with lower-limb amputations. A similar effect on the ROM might be achieved with decreasing the stiffness of the springs of ESR feet, but that could negatively affect the energy efficiency and the roll-over behavior of the feet on level ground [7] Another concept is to actively control an integrated ankle joint by adapting hydraulic plantar- and dorsiflexion resistances to the terrain to control the ROM [8,9,10] and regulate shank rotation velocity [11]. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call