Abstract

The utilization of three-dimensional (3D) printing technologies as innovative manufacturing methods for drug products has recently gained growing interest. From a technological viewpoint, proof-of-concept on the performance of different printing methods already exist, followed by visions about future applications in hospital or community pharmacies. The main objective of this study was to investigate the perceptions of healthcare professionals in a tertiary university hospital about oral 3D-printed medicines for pediatric patients by means of focus group discussions. In general, the healthcare professionals considered many positive aspects and opportunities in 3D printing of pharmaceuticals. A precise dose as well as personalized doses and dosage forms were some of the advantages mentioned by the participants. Especially in cases of polypharmacy, incorporating several drug substances into one product to produce a polypill, personalized regarding both the combination of drug substances and the doses, would benefit drug treatments of several medical conditions and would improve adherence to medications. In addition to the positive aspects, concerns and prerequisites for the adoption of 3D printing technologies at hospital settings were also expressed. These perspectives are suggested by the authors to be focus points for future research on personalized 3D-printed drug products.

Highlights

  • The utilization of three-dimensional (3D) printing technologies as innovative manufacturing methods for drug products has recently gained growing interest among academia and pharmaceutical companies, with the US Food and Drug Administration (FDA) licensing the first 3D-printed medicine, Spritam® by Aprecia Pharmaceuticals, in 2015. 3D printing technology aims at constructing three-dimensional objects by depositing layers of materials on top of each other, based on computer-aided design, by means of various printing techniques [1]

  • In addition to the positive aspects, concerns and prerequisites for the adoption of 3D printing technologies at hospital settings were expressed. These perspectives are suggested by the authors to be focus points for future research on personalized 3D-printed drug products

  • This is unlikely to happen at hospital wards, though, as drug products are stored in cabinets out of the reach for children and nurses administer the medicines to patients

Read more

Summary

Introduction

The utilization of three-dimensional (3D) printing technologies as innovative manufacturing methods for drug products has recently gained growing interest among academia and pharmaceutical companies, with the US Food and Drug Administration (FDA) licensing the first 3D-printed medicine, Spritam® by Aprecia Pharmaceuticals, in 2015. 3D printing technology aims at constructing three-dimensional objects by depositing layers of materials on top of each other, based on computer-aided design, by means of various printing techniques [1]. 3D printing technology aims at constructing three-dimensional objects by depositing layers of materials on top of each other, based on computer-aided design, by means of various printing techniques [1]. Studies on the development of different printing technologies in drug manufacturing of oral dosage forms are comprehensively presented in the literature. Different shapes of solid dosage forms have been printed using various technologies, such as stereolithography (SLA) [14] and FDM [15]; for example, a chewable soft dosage form in the shape of a Lego brick with gelatin-based matrix and extruded drug paste inside the matrix was fabricated using embedded 3D printing [16]. A more comprehensive description of different printing techniques used for the fabrication of drug products is presented in some recent review articles [22,23,24,25,26]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call