Abstract

Even though Model-based Software Engineering (MBSwE) techniques and Autogenerated Code (AGC) have been increasingly used to produce complex software systems, there is only anecdotal knowledge about the state-of-the practice. Furthermore, there is a lack of empirical studies that explore the potential quality improvements due to the use of these techniques. This paper presents in-depth qualitative findings about development and Software Assurance (SWA) practices and detailed quantitative analysis of software bug reports of a NASA mission that used MBSwE and AGC. The mission's flight software is a combination of handwritten code and AGC developed by two different approaches: one based on state chart models (AGC-M) and another on specification dictionaries (AGC-D). The empirical analysis of fault proneness is based on 380 closed bug reports created by software developers. Our main findings include: (1) MBSwE and AGC provide some benefits, but also impose challenges. (2) SWA done only at a model level is not sufficient. AGC code should also be tested and the models and AGC should always be kept in-sync. AGC must not be changed manually. (3) Fixes made to address an individual bug report were spread both across multiple modules and across multiple files. On average, for each bug report 1.4 modules, that is, 3.4 files were fixed. (4) Most bug reports led to changes in more than one type of file. The majority of changes to auto-generated source code files were made in conjunction to changes in either file with state chart models or XML files derived from dictionaries. (5) For newly developed files, AGC-M and handwritten code were of similar quality, while AGC-D files were the least fault prone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call