Abstract

2D Ruddlesden–Popper (RP) perovskite solar cells have manifested superior operation durability yet inferior charge transport compared to their 3D counterparts. Integrating 3D phases with 2D RP perovskites presents a compromise to maintain respective advantages of both components. Here, the spontaneous generation of 3D phases embedded in 2D perovskite matrix is demonstrated at room temperature via introducing S‐bearing thiophene−2−ethylamine (TEA) as both spacer and stabilizer of inorganic lattices. The resulting 2D/3D bulk heterojunction structures are believed to arise from the compression‐induced epitaxial growth of the 3D phase at the grain boundaries of the 2D phase through the Pb−S interaction. The as‐prepared 2D TEA perovskites exhibit longer exciton diffusion length and extended charge carrier lifetime than the paradigm 2D phenylethylamine (PEA)‐based analogues and hence demonstrate an outstanding power conversion efficiency of 7.20% with significantly increased photocurrent. Dual treatments by NH4Cl and dimethyl sulfoxide are further applied to ameliorate the crystallinity and crystal orientation of 2D perovskites. Consequently, TEA‐based devices exhibit a stabilized efficiency over 11% with negligible hysteresis and display excellent ambient stability without encapsulation by preserving 80% efficiency after 270 h storage in air with 60 ± 5% relative humidity at 25 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.