Abstract

The importance of small passenger aircraft design fitting up to nine passengers and the evaluation of associated technologies have been recently increasing. This is related to the upcoming interest in on demand air mobility concepts not only for intra- or inter-urban transport but also for thin-haul routes ranging from 150 km to approximately 500–800 km. Such concepts seem feasible as key enabling technologies (e.g., flight automation and battery technology) are likely to be mature enough to enable these concepts in the foreseeable future. However, until battery specific energy in particular surpasses the threshold of approximately 400 Wh/kg, hybrid electric propulsion concepts could serve as an interim solution. Therefore, this paper deals with the question of how hybrid electric concepts score compared to conventional piston engine aircraft and which concept promises the most benefits. This includes consideration of propulsion-airframe integration benefits of electric engines through distributed electric propulsion (DEP). Results show that the series hybrid electric concept is superior to a parallel setup if at least a 15% higher cruise lift-to-drag ratio can be achieved due to DEP (30–50% increase likely). Despite higher weight, variable operating costs can be reduced by 15–35% with application of series hybrid electric propulsion concepts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call