Abstract

Gibberella stalk rot (GSR) caused by the fungus Fusarium graminearum is a devastating disease of maize (Zea mays L.), but we lack efficient methods to control this disease. Biological control agents, including beneficial microorganisms, can be used as an effective and eco-friendly approach to manage crop diseases. For example, Bacillus velezensis SQR9, a bacterial strain isolated from the rhizosphere of cucumber plants, promotes growth and suppresses diseases in several plant species. However, it is not known whether and how SQR9 affects maize resistance to GSR. In this study, we found that treatment with SQR9 increased maize resistance to GSR by activating maize induced systemic resistance (ISR). RNA-seq and qRT-PCR analysis showed that phenylpropanoid biosynthesis, amino acid metabolism and plant-pathogen interaction pathways were enriched in the root upon colonization by SQR9. Also, several genes associated with calcium signaling pathways were up-regulated by SQR9 treatment. However, the calcium signaling inhibitor LaCl3 weakened the SQR9-activated ISR. Our data suggest that the calcium signaling pathway contributes to maize GSR resistance via the activation of ISR induced by SQR9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.