Abstract

Exercise can attenuate mitochondrial dysfunction caused by aging. Our study aimed to compare 12 weeks of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the expression of mitochondria proteins [e.g., AMP-activated protein kinase (AMPK), Estrogen-related receptor alpha (ERRα), p38 mitogen-activated protein kinase (P38MAPK), and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α)] in gastrocnemius muscle of old female rats. In this experimental study, thirty six old female Wistar rats (18-month-old and 270-310 g) were divided into three groups: i. HIIT, ii. MICT, and iii. Control group (C). The HIIT protocol was performed for 12 weeks with 16-28 minutes (2 minutes training with 85-90% VO2max in high intensity and 2 minutes training with 45-75% VO2max low intensity). The MICT was performed for 30-60 minutes with the intensity of 65-70% VO2max. The gastrocnemius muscle expression of AMPK, ERRα, P38MAPK, and PGC1α proteins were determined by Western blotting. The expression of AMPK (P=0.004), P38MAPK (P=0.003), PGC-1α (P=0.028), and ERRα (P=0.006) in HIIT was higher than C group. AMPK (P=0.03), P38MAPK (P=0.032), PGC-1α (P=0.015), and ERRα (P=0.028) in MICT was higher than the C group. Also expression of AMPK (P=0.008), P38MAPK (P=0.009), PGC-1α (P=0.020) and ERRα (P=0.014) in MICT was higher than MICT group. It seems that exercise training has beneficial effects on mitochondrial biogenesis, but the HIIT training method is more effective than MICT in improving mitochondrial function in aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call