Abstract
Silver addition has been known to improve mechanical and superconducting performance of bulk magnesium boride (MgB2) superconductor synthesized via solid state sintering. While formation of pinning phases and impurities such as Ag–Mg phases and MgO, respectively, responsible for high performance, part of the Mg in initial mixture will be expected to be consumed by silver. In this work, the authors add varied amounts of Mg systematically such as x: 2 (while x = 1.05, 1.075, 1.1, 1.125, 1.15) ratio of Mg:B instead of usual stoichiometric ratio of 1:2. To obtain high superconducting properties, the authors use carbon encapsulated boron (1.5% carbon) along with 4 wt% Ag. X‐ray diffraction analysis shows the presence of Ag–Mg phases and minute amount of MgO. Superconducting quantum interference device (SQUID) measurements indicate that high irreversibility field (4.76 T) and large Jc of 520, 440, and 347 kA cm−2 at 10, 15, and 20 K, respectively, at self‐field was exhibited in sample with x = 1.075. Flux pinning force studies are done to analyze the effect of secondary phases formed. All results analyzed explain the improved critical current performance based on nanometer‐sized Ag–Mg particles in the final product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.