Abstract

BackgroundGnaphalium affine D. Don extract (GAD) enhanced efficacy and reduced toxicity of benzbromarone (BBR) in combination use. However, little is known about effects of GAD on the pharmacokinetics (PKs) and metabolic enzymes of BBR. PurposeTo investigate the pharmacokinetic (PK) and pharmacodynamic (PD) mechanism of the herb-drug interactions (HDIs) between GAD and BBR. Study design and methodsIntragastric single BBR (4.5 or 50 mg/kg), single BBR (4.5 or 50 mg/kg) + single GAD (450 mg/kg, 2 h after BBR-administration), or single BBR (4.5 or 50 mg/kg) + multiple GAD (450 mg/kg/day, once daily for 7 days) were administered to both sexes for BBR PK studies in normal rats. Intragastric multiple BBR (4.5 mg/kg/day), or multiple BBR (4.5 mg/kg/day) + multiple GAD (450 mg/kg/day, 2 h after BBR-administration) were administered for BBR PK and PD studies in male rats with hyperuricemic nephropathy (HN). The cumulative anti-hyperuricemic effects of BBR and BBR+GAD were determined by plasma uric acid (UA) concentration-time curve and area under curve (AUCUA). An in vivo cocktail approach was employed to determine the effects of GAD on cytochrome P450 (CYP) 2C11(9) and 1A2 – mediated drug metabolism. ResultsIn normal rats, the repeated dose administration of GAD induced a significant increase of BBR AUC and prolonged the mean residence time (MRT) (p < 0.05). systemic exposure to BBR and metabolically derived hydroxybenzbromarones was significantly greater in female compared with male rats (p < 0.05). In HN rats, post-administration of GAD resulted in significantly higher bioavailability and enterohepatic recycling (ER) of BBR relative to the BBR alone administrated group from the prolongation of terminal elimination half-life (T1/2) and MRT of BBR (p < 0.05). Significantly higher urate-lowering effect of BBR+GAD compared with BBR alone was generally observed at post-dosing most time points with a maximal effect of 84.3% (acute treatment), 71.4% (7-day subchronic treatment) and 82.5% (14-day subchronic treatment) reduction in UA levels. Additionally, GAD showed a significant inhibitory effect on CYP2C11(9)-mediated tolbutamide (probe substrate) metabolism with ≥ 1.25 but < 2-fold increase in AUCtolbutamide. ConclusionsPD synergism demonstrated with the BBR+GAD combination could be explained by the PK interaction observed partially from CYP2C11(9)-mediation and enterohepatic recycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call