Abstract
Right ventricular (RV) dysfunction remains a major problem after heart transplantation and may be associated with brain death (BD) in a donor. A calcineurin inhibitor tacrolimus was recently found to have beneficial effects on heart function. Here, we examined whether tacrolimus might prevent BD-induced RV dysfunction and the associated pathobiological changes. After randomized tacrolimus (n = 8; 0.05 mg·kg-1·day-1) or placebo (n = 9) pretreatment, pigs were assigned to a BD procedure and hemodynamically investigated 1, 3, 5, and 7 h after the Cushing reflex. After euthanasia, myocardial tissue was sampled for pathobiological evaluation. Seven pigs were used as controls. Calcineurin inhibition prevented increases in pulmonary vascular resistance and RV-arterial decoupling induced by BD. BD was associated with an increased RV pro-apoptotic Bax-to-Bcl2 ratio and RV and LV apoptotic rates, which were prevented by tacrolimus. BD induced increased expression of the pro-inflammatory IL-6-to-IL-10 ratio, their related receptors, and vascular cell adhesion molecule-1 in both the RV and LV. These changes were prevented by tacrolimus. RV and LV neutrophil infiltration induced by BD was partly prevented by tacrolimus. BD was associated with decreased RV expression of the β-1 adrenergic receptor and sarcomere (myosin heavy chain [MYH]7-to-MYH6 ratio) components, while β-3 adrenergic receptor, nitric oxide-synthase 3, and glucose transporter 1 expression increased. These changes were prevented by tacrolimus. Brain death was associated with isolated RV dysfunction. Tacrolimus prevented RV dysfunction induced by BD through the inhibition of apoptosis and inflammation activation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.