Abstract
Deep hypothermic circulatory arrest (DHCA) during heart surgery may induce neuroinflammation leading to neurocognitive dysfunction. Chlorogenic acid (CA) is a common phytochemical, which can attenuate neuroinflammation. Nevertheless, the underlying mechanism involved in the anti-inflammatory effect of CA after DHCA is unknown. The present study therefore characterized the anti-inflammatory functions of CA after DHCA using in vivo and in vitro DHCA models. The activation of microglia, inflammatory cytokine levels, and the NF-κB pathway were measured. The results showed that CA treatment ameliorated neurocognitive function and reduced the inflammatory cytokine levels in the brain and circulation. Furthermore, the microglial and NF-κB activations were suppressed after DHCA. CA exerted the same anti-inflammatory effect in hypothermia OGD microglial cells as the in vivo study. Additional studies indicated that the regulation of ubiquitin ligase activity of TRAF6 and RIP1 by CYLD was related to the mechanism involving inhibition of CA in the NF-κB pathway. Together, the results showed that CA may attenuate neuroinflammation after DHCA by modulating the signaling of CYLD/NF-κB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.