Abstract

The irrational use of nitrogen (N) fertilizer has become a major threat to soil quality and food security, resulting in serious ecological and environmental problems. Holistic approaches to N fertilizer application are required to maintain a high N utilization efficiency (NUE) and sustainable agriculture development. Biochar is an efficient carbon-rich material for amending soil quality and promoting crop N uptake, but knowledge pertaining to the promoting effects of biochar application on N fertilizers is still limited. In this study, a field plot experiment was designed to detect the combined effects of biochar (0, 15 and 30 t ha−1) and N fertilizer (204, 240 and 276 kg N ha−1) on the soil nutrient levels, NUE, plant growth performance and crop production of maize. The results demonstrated that the combined application of N fertilizer and biochar can significantly decrease the soil pH and increase the contents of soil organic carbon, mineral N, available phosphorus and potassium. The crop N uptake and N content were largely promoted by the addition of N fertilizer and biochar, resulting in higher leaf photosynthetic efficiency, dry matter accumulation and grain yields. The highest yields (14,928 kg ha−1) were achieved using 276 kg N ha−1 N fertilizer in combination with 15 t ha−1 biochar, and the highest NUE value (46.3%) was reached with 204 kg N ha−1 N of fertilizer blended with 30 t ha−1 of biochar. According to structural equation modeling, the beneficial effects of N fertilizer and biochar on the plant biomass of maize were attributed to the direct effects related to soil chemical properties and plant growth parameters. In conclusion, N fertilizer combined with biochar application is an effective strategy to enhance the utilization of N fertilizer and crop production for maize by increasing soil fertility, improving plant crop uptake and promoting plant growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.