Abstract

Exposure to organophosphorus (OP) compounds, such as pesticides and the chemical warfare agents (soman and sarin), respectively represents a major health problem and a threat for civilian and military communities. OP poisoning may induce seizures, status epilepticus and even brain lesions if untreated. We recently proved that a combination of atropine sulfate and ketamine, a glutamatergic antagonist, was effective as an anticonvulsant and neuroprotectant in mice and guinea-pigs exposed to soman. Since OP exposure may also occur in conditions of heat strain due to climate, wearing of protective gears or physical exercise, we previously demonstrated that ketamine/atropine association may be used in a hot environment without detrimental effects. In the present study, we assess soman toxicity and evaluate the effects of the ketamine/atropine combination on soman toxicity in a warm thermoneutral environment. Male Wistar rats, exposed to 31°C (easily reached under protective equipments), were intoxicated by soman and treated with an anesthetic dose of ketamine combined with atropine sulfate. Body core temperature and spontaneous locomotor activity were continuously monitored using telemetry. At the end of the warm exposure, blood chemistry and brain mRNA expression of some specific genes were measured. In soman-intoxicated animals, metabolic and genic modifications were related to convulsions rather than to soman intoxication by itself. In the warm environment, ketamine/atropine combination did not produce any side-effect on the assessed variables. Furthermore, the ketamine/atropine combination exhibited beneficial therapeutic effects on soman-intoxicated rats such as a limitation of convulsion-induced hyperthermia and of the increase in some blood chemistry markers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.