Abstract

Hyperglycaemia is known to reduce nitric oxide (NO) bioavailability by modulating endothelial NO synthase (eNOS) activity, and polyphenols are believed to have cardiovascular benefit. One possible mechanism could be through interaction with eNOS. The effects of the oligomerized polyphenol oligonol on eNOS phosphorylation status and activity were examined in porcine aortic endothelial cells cultured in high glucose concentrations. Exposure to high glucose concentrations strongly inhibited eNOS phosphorylation at Ser-1177 and dephosphorylation at Thr-495 in bradykinin (BK)-stimulated cells. These inhibitory effects of high glucose were significantly prevented by treatment with oligonol. Akt and p38 mitogen-activated protein kinase (MAPK) were activated in BK-stimulated cells. High glucose inhibited Akt activation but enhanced p38 MAPK activation, both of which were reversed by oligonol treatment. The phosphatidylinositol 3-kinase inhibitor wortmannin blocked the reversal by oligonol of phosphorylation at Ser-1177, but not dephosphorylation at Thr-495, in BK-stimulated cells exposed to high glucose. The effect of oligonol on BK dephosphorylation under high glucose was mimicked by protein kinase C (PKC) epsilon-neutralizing peptides. These data suggest that the effects of oligonol on high glucose-induced attenuation of eNOS Ser-1177 phosphorylation and Thr-495 dephosphorylation may be regulated by Akt activation and PKCepsilon inhibition respectively. Oligonol also prevented high glucose-induced attenuation of BK-stimulated NO production. Oligonol prevented the impairment of eNOS activity induced by high glucose through reversing altered eNOS phosphorylation status. This mechanism may underlie the beneficial cardiovascular health effects of this oligomerized polyphenol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.