Abstract

The gastro-intestinal tract is highly innervated by both intrinsic and extrinsic sensory nerves and this neuronal component is thought to play a role in local inflammatory responses. This in vivo study was designed to determine the function of substance P and the tachykinin NK 1 receptor in the pathogenesis of inflammatory bowel disease by the use of the specific antagonist RP 67580. The dinitrofluorobenzene (DNFB)-induced colonic hypersensitivity model is associated with increased levels of substance P in the colon. The tachykinin NK 1 receptor antagonist RP 67580 was used to investigate the role of substance P on the development of diarrhea, mast cell infiltration and activation, colonic tissue damage, hypertrophy of colonic lymphoid structures and leukocyte infiltration. The formation of watery diarrhea could completely be abrogated by treatment with RP 67580 in DNFB-sensitized animals 72 h after challenge. Antagonizing the tachykinin NK 1 receptor in these animals also resulted in significantly reduced colonic patch hypertrophy, leukocyte recruitment and tissue damage. Total levels of substance P in the colon of DNFB-sensitized mice treated with the inactive enantiomer of the tachykinin NK 1 receptor antagonist were significantly higher compared to DNFB-sensitized mice treated with RP 67580 72 h after challenge. Although RP 67580 was capable of reducing the total number of mast cells present in the colon, mast cell activation was not affected by this treatment. In conclusion, in this chemically-induced immunological model for inflammatory bowel disease we demonstrated an important role for tachykinin NK 1 receptors, and its ligand substance P, in the development of colitis downstream from mast cell activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.