Abstract

The probiotic Bacillus amyloliquefaciens H57 increased weight gain, increased nitrogen retention and increased feed intake in ruminants when administered to the diet. This study aims to develop a better understanding of this probiotic effect by analysing changes in the rumen prokaryotic community. Sequencing the 16S rRNA gene PCR amplicons of the rumen microbiome, revealed that ewes fed H57 had a significantly different rumen microbial community structure to Control sheep. In contrast, dairy calves showed no significant differences in rumen community structure between treatment groups. In both instances, H57 was below detection in the rumen community profile and was only present at low relative abundance as determined by qPCR. The altered rumen microbial community in sheep likely contributes to increased weight gain through more efficient digestion of plant material. As no change occurred in the rumen community of dairy calves it is suggested that increased weight gain may be due to changes in community function rather than structure. The low relative abundance of H57 as determined by qPCR, suggests that weight gain was not directly mediated by the probiotic, but rather by influencing animal behaviour (feed consumption) and/or altering the native rumen community structure or function. This study provides a novel look at the rumen prokaryotic community in both sheep and dairy calves when fed H57. These findings improve our understanding for the potential rumen community involvement in H57-enabled weight gain. The study reveals that the probiotic B. amyloliquefaciens H57 is capable of benefiting ruminants without colonizing the rumen, suggesting an indirect mechanism of action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call