Abstract

We studied the effects of CP-0127, a novel bradykinin receptor antagonist, in a rat model of traumatic shock. Pentobarbital-anesthetized rats subjected to Noble-Collip drum trauma developed a shock state characterized by marked hypotension, significant increases in plasma-free amino-nitrogen (8.6 +/- 0.97 vs. 2.3 +/- 0.15 U/ml in control rats) and intestinal myeloperoxidase (MPO) activity (2.7 +/- 0.33 vs. 0.08 +/- 0.03 U/100 mg control rats, intestinal tissue), and a survival time of only 110 +/- 9 min. Moreover, superior mesenteric artery (SMA) rings isolated from rats subjected to traumatic shock relaxed to the endothelium-dependent vasodilator acetylcholine (ACh) significantly less than rings isolated from control rats (21 +/- 4 vs. 92 +/- 4%, P < 0.001). Administration of CP-0127 at a dose of 10 mg/kg subcutaneously completely blocked the hypotensive response to 2.5 micrograms/kg bradykinin injected intravenously in sham traumatic shock rats. CP-0127 given immediately posttrauma prolonged survival time to 219 +/- 27 min (P < 0.01) and attenuated the increases in plasma-free amino-nitrogen (3.7 +/- 0.41 U/ml, P < 0.01) and tissue MPO activities (1.2 +/- 0.71 U/100 mg intestinal tissue, P < 0.05). Furthermore, SMA endothelial function was significantly preserved (relaxation to ACh: 57 +/- 6%, P < 0.01) in CP-0127-treated traumatic shock rats. These results indicate that bradykinin plays an important role in tissue injury associated with traumatic shock and that CP-0127 affords significant protection, which may be achieved through inhibition of neutrophil-endothelial interaction and protection of vascular endothelial function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.