Abstract

“If you find yourself in a hole, stop digging.” Although Denis Healey's famous adage ( Metcalfe 2007 ) may offer sound advice for politicians, it is less relevant to worms, clams, and other higher organisms that rely on their digging ability for survival. In this article, we review recent work on the development of simple models that elucidate the fundamental principles underlying digging and burrowing strategies employed by biological systems. Four digging regimes are identified based on dimensionless digger size and the dimensionless inertial number. We select biological organisms to represent three of the four regimes: razor clams, sandfish, and nematodes. Models for all three diggers are derived and discussed, and analogies are drawn to low–Reynolds number swimmers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.