Abstract

Magnetic resonance imaging (MRI) plays an important role in disease diagnosis. The noise that appears in MRI images is commonly governed by a Rician distribution. The bendlets system is a second-order shearlet transform with bent elements. Thus, the bendlets system is a powerful tool with which to represent images with curve contours, such as the brain MRI images, sparsely. By means of the characteristic of bendlets, an adaptive denoising method for microsection images with Rician noise is proposed. In this method, the curve contour and texture can be identified as low-frequency components, which is not the case with other methods, such as the wavelet, shearlet, and so on. It is well known that the Rician noise belongs to a high-frequency channel, so it can be easily removed without blurring the clarity of the contour. Compared with other algorithms, such as the shearlet transform, block matching 3D, bilateral filtering, and Wiener filtering, the values of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) obtained by the proposed method are better than those of other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.