Abstract

The elasticity of a composite laminate under bending loads is approached through a boundary integral formulation and solved by the boundary element method. The integral equations governing the behaviour of each layer within the laminate, are deduced using the reciprocity theorem. Exact analytical singular solutions of the generalized orthotropic elasticity, i.e. the fundamental solutions of the problem, are employed as the kernels of the integral equation. The formulation does not make any assumption as to the nature of the elastic response and it allows consideration of general section geometries and stacking sequences. The solution is obtained through the enforcement of the interface continuity conditions and the prescribed boundary conditions in such a way that all of the elasticity relations involved in the problem description are exactly satisfied. Numerical solutions for different laminate configurations are presented which show that the present approach gives accurate stress distributions with meaningful advantages and without requiring too much computational effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.