Abstract

Two-variable sinusoidal shear and normal deformation theory is used in this paper for elastic analysis of doubly curved nanoshells resting on elastic foundation. Thickness stretching effect is accounted based on higher-order shear and normal deformation theory. The transverse displacement is decomposed into bending and stretching components based on two-variable sinusoidal shear deformation theory. Unlike classical structural theories for plates and shells, the present theory considers an extra variable as transverse displacement along the thickness direction. 3D constitutive relations are presented based on generalized Hooke’s law. The principle of virtual work is used for derivation of governing equations and proper boundary conditions. An extensive parametric analysis is performed to present variation of in-plane and transverse displacements along the thickness direction in terms of the nonlocal parameter, opening angles and foundation characteristics. Comparison of results with and without thickness stretching effect show that the present theory improves results about 4% with respect to the structural theories without stretching effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.