Abstract

The static response of simply supported functionally graded plates (FGP) subjected to a transverse uniform load (UL) or a sinusoidally distributed load (SL) and resting on an elastic foundation is examined by using a new hyperbolic displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the hyperbolic shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.