Abstract

As a local effect of dynamical dark energy, bending of light in the presence of a spherically symmetric and static black hole surrounded by quintessence has been studied. Having in mind recent observational data, we have treated the problem as a deviation from Kottler space-time. This deviation is measured by a perturbation parameter $\varepsilon$ included in the equation of state parameter of quintessence as $\omega_q=-1+\frac{1}{3}\varepsilon$. Here, the deflection angle is calculated and then the result is compared with \cite{Arakida:2011th} in the limit $\varepsilon\rightarrow 0$ where the quintessence behaves like the cosmological constant. It is shown that unlike the cosmological constant, the effect of quintessence on the photon energy equation can not be absorbed into the definition of impact parameter. Moreover in this paper, we generalize the Kiselev black hole to the case that there is a modified Chaplygin gas as the dark energy component of the universe and show that the resulted metric can be reduced to the Kiselev metric by adjusting some arbitrary parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.