Abstract
ABSTRACTThe complex variable method is applied to obtain solutions for the deflexion of a supported circular plate with uniform line loading along an eccentric circle under a general boundary condition including the clamped boundary , a boundary with zero peripheral couple , a boundary with equal boundary cross-couples , a hinged boundary and a boundary for which , η being Poisson's ratio. These solutions are used to obtain the deflexion at any point of a circular plate having an eccentric circular patch symmetrically loaded with respect to its centre. Expressions for the slope and cross-couples over the boundary and the deflexions at the centres of the plate and the loaded patch are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.