Abstract

Most structural health monitoring systems estimate the overall behavior by measuring the acceleration response, which cannot directly measure the stress or damage state of individual structural members. An alternative approach is to use strain measurements; however, methods for analyzing and utilizing strain data for actual steel buildings have not been established. In this study, highly precise semiconductor strain gauges were applied to an actual building. The accelerations and strains measured during earthquake loading were used to calculate the ratio of the bending moment at the beam or column sections to the displacement at the top of the building, which was defined as the “local stiffness.” This physical index represents the stiffness of structural elements near the measurement location and can be easily predicted through simple static frame analysis. The measured local stiffness was comparable to the analytical local stiffness values for the beams but was larger than that for the columns. This indicates that nonstructural members may exhibit a certain degree of restoring force and that the measured local stiffness may be strongly affected by nonstructural elements that are not considered during the structural design stage. Conversely, the measured local stiffness can be used to estimate the behavior of nonstructural components. The measured dominant frequency and local stiffness of the beams and columns showed a dependency on amplitude, but opposite trends were observed for the beams and columns. This indicates that the amplitude dependency of the dominant frequency is not due to the behavior of the beams and columns but to other reasons such as nonstructural components or changes in mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.