Abstract
We calculate bending moduli along the principal directions for forty-four select atomic monolayers using ab initio density functional theory (DFT). Specifically, considering representative materials from each of Groups IV, III–V, V monolayers, Group IV monochalcogenides, transition metal trichalcogenides, transition metal dichalcogenides and Group III monochalcogenides, we utilize the recently developed Cyclic DFT method to calculate the bending moduli in the practically relevant but previously intractable low-curvature limit. We find that the moduli generally increase with thickness of the monolayer, while spanning three orders of magnitude between the different materials. In addition, structures with a rectangular lattice are prone to a higher degree of anisotropy relative to those with a honeycomb lattice. Exceptions to these trends are generally a consequence of unusually strong/weak bonding and/or significant structural relxation related effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.