Abstract
Dielectric elastomer actuators (DEAs) have great potential for application in soft robotics due to their ability to undergo substantial deformations, rapid response times, and high energy density when subjected to external electrical stimuli. However, the application of DEAs in the field of soft grippers is limited by their restricted direct electro-bending capability, output force, self-sensing capacity, and pre-stretching requirement. In this study, we fabricated a single compliant electrode DEA (SCE-DEA) which was made by sandwiching a compliant electrode between two layers of poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS)/white mineral oil (WO) dielectric elastomer films. The SCE-SEBS/WO was demonstrated to have the capacities of bending, sensing, and electroadhesion (EA). The SCE-SEBS/WO can be used in various soft actuator modes, such as the unipolar EA actuator, soft gripper, and soft vibrator. The grabbing mechanism of SCE-SEBS/WO-based soft grippers with opposite bipolar configuration is caused by electric field induced bending of SEC-SEBS/WO and subsequent electrostatic attraction between both SEC-SEBS/WO. The SEC-SEBS/WO based soft grippers have rapid response detachment, and ability to grasp various types of objects. Three-layer stacked SCE-SEBS/WO-60 (with 60 wt% of WO) exhibited 531 mN cm−2 of EA stress on the paper at 3.0 kV applied voltage, and the soft gripper made by four SCE-SEBS/WO-60 can successfully grab wood blocks weighing 162.4 g at 5 kV applied voltage. The sensing capacity of SCE-SEBS/WO based soft gripper was based on the bending strain dependent resistance changes of the compliant electrode. Our results provide new insights into the fabrication of DEA based soft grippers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.