Abstract
In the present paper, the effect of different bent angles on structural stability, electronic structure, and optical properties of Na absorbed borophene system is investigated using the density functional theory. The structure of the borophene was almost unchanged and the planar structure was not disrupted after the adsorption of a Na atom. Directly above the bottom B–B bonds is considered as the optimal adsorption position of single. The stability of the Na adsorbed borophene system can be decreased under the condition of different bent angles. The adsorption of Na atoms changes the energy band structure of the intrinsic borophene according to the calculation results of energy band structure and density of states, which resulting the conduction band contains more impurities. The 2p orbital of Na and the 3p orbital of B hybridize between −4 eV and 6 eV. Bending deformation gives rise to the electron transfer between Na atoms and B atoms. In terms of optical properties, the bending deformation improves the absorption of infrared light and the catalytic activity of light in the adsorbed system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.