Abstract

The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magnetostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young’s modulus and Poisson’s ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.