Abstract

Driven by climate change and the need for a more sustainable construction sector, policy is increasingly demanding and promoting timber hybrid construction methods. In the German state of Baden-Württemberg, every new public building has to be of timber or timber hybrid construction (Holzbauoffensive BW). The objective of multi-story buildings with large floor spans can only be achieved in a resource-efficient way by hybrid constructions combining timber and steel components. A research project recently completed at the Karlsruhe Institute of Technology was aimed at the development and systematic investigation of hybrid bending beams in which an advantageous combination of the materials steel and timber is used. For this purpose, steel profiles are integrated into timber cross-sections in a shear-resistant manner by adhesive bonding. As part of the experimental, numerical and analytical investigations, different cross-sections of steel and timber, as well as different construction materials, were considered (GL24h, LVL48p, LVL80p, S355 and S420). The results of large-scale four-point bending tests illustrate the potential of this new hybrid construction method. Depending on the geometry and material combinations tested, the bending stiffness could be increased by up to 250%, and the load-carrying capacity by up to 120%, compared to a glulam beam with identical dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.