Abstract
Thanks to their excellent stiffness, high ductility and strength-to-weight ratios, Magnesium alloys are increasing their applications in different fields, from automotive to aerospace and biomedical engineering. Particularly, in automotive industry the Magnesium alloys are used for steering wheel skeletons, which are mainly loaded in bending and torsion. Therefore, investigating on the bending and torsional properties of Magnesium alloys under static and dynamic loading is crucial for practical applications. This paper presents the results of an experimental program on AM50 Magnesium alloy specimens, tested under quasi-static and dynamic loading. Three-point quasi-static and dynamic bending tests were conducted on rectangular specimens. A loading speed of 1 mm/s was assumed in the quasi-static tests. The dynamic tests were carried out by drop weight with three different loading speeds (1, 3 and 5 m/s). The post-elastic behavior of the material was investigated, estimating the load carrying capacity, ductility and energy absorption and by comparing the results obtained under dynamic and static conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.