Abstract

The pull-in instability and the vibration for a prestressed circular electrostatically actuated microplate are investigated in consideration of the Casimir force. Based on von Kármán’s nonlinear bending theory of thin plates, the governing equations for the whole analysis are decomposed into two two-point boundary value problems. For static deformation of the plate, the geometric nonlinearity is involved and the pull-in parameters are obtained by using the shooting method through taking the applied voltage or Casimir parameter as an unknown. This algorithm is also used to study the small amplitude free vibration about the predeformed bending configuration following an assumed harmonic time mode, and the variation of the prestress and Casimir parameters dependent fundamental natural frequency with the applied voltage is presented. Several case studies are compared with available published simulations to confirm the proposed method. The influences of various parameters, such as the initial gap-thickness ratio, Casimir effect, prestress on the pull-in instability behavior and the natural frequency are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.