Abstract

The increasing application of functionally graded materials in the aerospace structures requires the adoption of accurate modeling strategies. The original formulation of the Refined Zigzag Theory is here extended to the bending and free vibration analysis of sandwich plates embedding functionally graded layers, either as faces or core. Extensive numerical investigation shows the superior predictive capabilities of Refined Zigzag Theory over both First-order Shear Deformation Theory and Third-order Shear Deformation Theory, if compared with the reference three-dimensional elasticity or high-fidelity FEM solutions. In virtue of its accuracy and of the C0–continuity requirement for shape functions, Refined Zigzag Theory can be adopted to formulate reliable and computationally efficient finite elements suited for large-scale analyses of both traditional and functionally graded structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.