Abstract

This paper presents the studies carried out on bending and free vibration behavior of truss core sandwich panel filled with foam typically used in aerospace applications. Equivalent stiffness properties for foam-filled truss core sandwich panel are derived by idealizing 3D foam-filled sandwich panel to an equivalent 2D orthotropic thick plate continuum. The accuracy of the derived elastic property is ensured by the numerical comparison of free vibration response of 3D and its equivalent 2D finite element model. The derived stiffness constants were used in closed form solution to evaluate the maximum deflection of the continuum. The results show that the free vibration and static behavior of the sandwich panel can be enhanced in due consideration to the space constraint by filling foam in the empty space of core. The results also reveal that triangular core foam-filled sandwich panel deflects less compared to other cores. From the free vibration analysis, effect of filling foam is effective in cellular and trapezoidal core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call