Abstract

In this article, bending behavior of the sandwich plates with embedded shape memory alloy wires in their face sheets is studied. Three-dimensional finite element method is used for constructing and analyzing the sandwich plates with flexible core and two stiff face sheets. Some important points such as continuity conditions of the displacements, satisfaction of inter-laminar transverse shear stresses, conditions of zero transverse shear stresses on the upper and lower surfaces and in-plane and transverse flexibility of the soft core are considered for the accurate modeling of the sandwich plate. Solutions for bending analysis of shape memory alloy wire-reinforced sandwich plates under various transverse loads are presented and the effects of plate dimensions, shape memory alloy wires diameter, boundary conditions and shape memory alloy wires embedding positions are studied. Comparison of the present results in special case with those of the three-dimensional theory of elasticity and some plate theories confirms the accuracy of the proposed model. According to the obtained numerical results, the local behavior of the sandwich plate in bending against various loading conditions was significantly improved by employing the shape memory alloy wires in the face sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call