Abstract

The nonlocal theory is commonly applied for nanomaterials due to its capability in considering size influences. Available studies have shown that the differential version of this theory is not suitable for some problems such as bending of cantilever nanobeams, and the integral version must be used to avoid obtaining inconsistent results. Therefore, an attempt is made in this paper to propose an efficient variational formulation based on the integral nonlocal model for the analysis of nanobeams. The formulation is developed in a general form so that it can be used for arbitrary kernel functions. The nanobeams are modeled using the Bernoulli-Euler beam theory, and their bending behavior is analyzed. Derivation of governing equations is performed according to an energy-based approach. Also, a numerical approach based on the Rayleigh-Ritz method is developed for the solution of problem. Moreover, the results of integral and differential models are compared. It is revealed that by the proposed numerical solution, the paradox in the behavior of nanocantilever is resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.