Abstract

In this paper, bending analysis of rectangular functionally graded nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory. The set of coupled equations are solved using the dynamic relaxation method combined with finite difference discretization technique for clamped and simply supported boundary conditions. Finally, the effects of aspect ratio, thickness-to-length ratio, boundary conditions, transverse load, and length scale parameter are studied in detail. The results showed that by rising the length scale-to-thickness ratio, the influence of the grading index on the deflection decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.