Abstract

The enhancement of bendability of flexible nanoelectronics is critically important to realize future portable and wearable nanoelectronics for personal and military purposes. Because there is an enormous variety of materials and structures that are used for flexible nanoelectronic devices, a governing design rule for optimizing the bendability of these nanodevices is required. In this article, we suggest a design rule to optimize the bendability of flexible nanoelectronics through neutral axis (NA) engineering. In flexible optical nanoelectronics, transparent electrodes such as indium tin oxide (ITO) are usually the most fragile under an external load because of their brittleness. Therefore, we representatively focus on the bendability of ITO which has been widely used as transparent electrodes, and the NA is controlled by employing a buffer layer on the ITO layer. First, we independently investigate the effect of the thickness and elastic modulus of a buffer layer on the bendability of an ITO film. Then, we develop a design rule for the bendability optimization of flexible optical nanoelectronics. Because NA is determined by considering both the thickness and elastic modulus of a buffer layer, the design rule is conceived to be applicable regardless of the material and thickness that are used for the buffer layer. Finally, our design rule is applied to optimize the bendability of an organic solar cell, which allows the bending radius to reach about 1 mm. Our design rule is thus expected to provide a great strategy to enhance the bending performance of a variety of flexible nanoelectronics.

Highlights

  • There has been rapid development in the field of flexible optical nanoelectronics such as organic solar cells (OSCs) and organic light-emitting diodes for future portable and wearable electronic nanodevices, which have potential personal and military applications [1,2,3,4,5,6,7,8,9,10]

  • By adopting a buffer layer, a fragile layer such as Indium tin oxide (ITO) can be located at the neutral axis (NA) position and the bending stress acting on the fragile layer can be greatly reduced, leading to flexible nanoelectronics with high bendability

  • Including ITO, polyethersulfone (PES), polyimide (PI), and zinc oxide (ZnO), were prepared as listed in Table 1, and nano-indentation tests for each material were performed under displacement control with maximum displacements from 50 to 500 nm using an MTS nanoindenter XP system with a Berkovich diamond indenter (Eden Prairie, MN, USA)

Read more

Summary

Introduction

There has been rapid development in the field of flexible optical nanoelectronics such as organic solar cells (OSCs) and organic light-emitting diodes for future portable and wearable electronic nanodevices, which have potential personal and military applications [1,2,3,4,5,6,7,8,9,10]. Researchers have reported that the mechanical bendability of electronic nanodevices can be increased by using a buffer layer above or below the ITO layer They did not suggest an optimized design rule that considers both the thickness and elastic modulus of the buffer material. We develop a design rule for the bendability optimization of flexible electronics by controlling the NA position, considering both the thickness and elastic modulus of the buffer layer. We believe that our design rule based on NA engineering will provide a great advantage to improve the bendability of flexible nanoelectronics

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.