Abstract

We consider two bosons in a one-dimensional harmonic trap, interacting by a contact potential, and compare the exact solution of this problem to a self-consistent numerical solution by using the multiconfigurational time-dependent Hartree (MCTDH) method. We thereby benchmark the predictions of the MCTDH method with a few-body problem that has an analytical solution for the most commonly experimentally realized interaction potential in ultracold quantum gases. It is found that exact ground state energy and first order correlations are accurately reproduced by MCTDH up to the intermediate dimensionless coupling strengths corresponding to typical background scattering lengths of magnetically trapped ultracold dilute Bose gases. For larger couplings, established for example by (a combination of) Feshbach resonances and optical trapping, the MCTDH approach overestimates the depth of the trap-induced correlation dip of first order correlations in position space, as well as overestimates the fragmentation, defined as the average relative occupation of orbitals other than the energetically lowest one. We anticipate that qualitatively similar features in the correlation function may arise for larger particle numbers, paving the way for a quantitative assessment of the accuracy of MCTDH by experiments with ultracold atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call