Abstract

Energies from the GW approximation and the Bethe-Salpeter equation (BSE) are benchmarked against the excitation energies of transition-metal (Cu, Zn, Ag, and Cd) single atoms and monoxide anions. We demonstrate that best estimates of GW quasiparticle energies at the complete basis set limit should be obtained via extrapolation or closure relations, while numerically converged GW-BSE eigenvalues can be obtained on a finite basis set. Calculations using real-space wave functions and pseudopotentials are shown to give best-estimate GW energies that agree (up to the extrapolation error) with calculations using all-electron Gaussian basis sets. We benchmark the effects of a vertex approximation (ΓLDA) and the mean-field starting point in GW and the BSE, performing computations using a real-space, transition-space basis and scalar-relativistic pseudopotentials. While no variant of GW improves on perturbative G0W0 at predicting ionization energies, G0W0ΓLDA-BSE computations give excellent agreement with experimental absorption spectra as long as off-diagonal self-energy terms are included. We also present G0W0 quasiparticle energies for the CuO-, ZnO-, AgO-, and CdO- anions, in comparison to available anion photoelectron spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call