Abstract

The conductor-like polarizable continuum model (CPCM) using several cavity models is applied to compute aqueous solvation free energies for a number of organic molecules (30 neutral molecules, 21 anions, and 19 cations). The calculated solvation free energies are compared to the available experimental data from the viewpoint of cavity models, computational methods, calculation time, and aqueous pKa values. The HF/6-31+G(d)//HF/6-31+G(d) and the HF/6-31+G(d)//B3LYP/6-31+G(d) with the UAKS cavities, in which radii are optimized with PBE0/6-31G(d), provide aqueous solvation effects in best agreement with available experimental data. The mean absolute deviations from experiment are 2.6 kcal/mol. The MP2/6-31++G(d,p)//HF/6-31+G(d) with the CPCM-UAKS(HF/6-31+G(d)) calculation is also performed for the base-catalyzed hydrolysis of methyl acetate in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.