Abstract
Symbolic execution is a powerful technique for bug finding and program testing. It is successful in finding bugs in real-world code. The core reasoning techniques use constraint solving, path exploration, and search, which are also the same techniques used in solving combinatorial problems, e.g., finite-domain constraint satisfaction problems (CSPs). We propose CSP instances as more challenging benchmarks to evaluate the effectiveness of the core techniques in symbolic execution. We transform CSP benchmarks into C programs suitable for testing the reasoning capabilities of symbolic execution tools. From a single CSP P, we transform P depending on transformation choice into different C programs. Preliminary testing with the KLEE, Tracer-X, and LLBMC tools show substantial runtime differences from transformation and solver choice. Our C benchmarks are effective in showing the limitations of existing symbolic execution tools. The motivation for this work is we believe that benchmarks of this form can spur the development and engineering of improved core reasoning in symbolic execution engines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.