Abstract

A benchmark database for interaction energy components of various noncovalent interactions (NCIs) along their dissociation curve is one of the essential needs in theoretical chemistry, especially for the development of force fields and machine-learning methods. We utilize DFT-SAPT or SAPT(DFT) as one of the most accurate methods to generate an extensive stock of the energy components, including dispersion energies extrapolated to the complete basis set limit (CBS). Precise analyses of the created data, and benchmarking the total interaction energies against the best available CCSD(T)/CBS values, reveal different aspects of the methodology and the nature of NCIs. For example, error cancellation effects between the S2 approximation and nonexact xc-potentials occur, and large charge transfer energies in some systems, including heavy atoms, can explain the lower accuracy of DFT-SAPT. This method is perfect for neutral complexes containing light nonmetals, while other systems with heavier atoms should be treated carefully. In the last part, a representative data set for all NCIs is extracted from the original data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.