Abstract

Learning-based algorithms for automated license plate recognition implicitly assume that the training and test data are well aligned. However, this may not be the case under extreme environmental conditions, or in forensic applications where the system cannot be trained for a specific acquisition device. Predictions on such out-of-distribution images have an increased chance of failing. But this failure case is oftentimes hard to recognize for a human operator or an automated system. Hence, in this work we propose to model the prediction uncertainty for license plate recognition explicitly. Such an uncertainty measure allows to detect false predictions, indicating an analyst when not to trust the result of the automated license plate recognition. In this paper, we compare three methods for uncertainty quantification on two architectures. The experiments on synthetic noisy or blurred low-resolution images show that the predictive uncertainty reliably finds wrong predictions. We also show that a multi-task combination of classification and super-resolution improves the recognition performance by 109% and the detection of wrong predictions by 29%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.